Tuning thalamic firing modes via simultaneous modulation of T- and L-type Ca2+ channels controls pain sensory gating in the thalamus.

نویسندگان

  • Eunji Cheong
  • Sukchan Lee
  • B Jiwon Choi
  • Minjeong Sun
  • C Justin Lee
  • Hee-Sup Shin
چکیده

Two firing modes of thalamocortical (TC) neurons, tonic and burst firings, are thought to reflect the divergent states of sensory signal transmission from the thalamus to the cortex. However, the behavioral consequences of changes in the thalamic firing between the two modes have not been well demonstrated. Moreover, although the firing modes of TC neurons are known to be affected by corticothalamic inputs via thalamic metabotropic glutamate receptor type 1 (mGluR1)-phospholipase C beta4 (PLCbeta4) pathway, its molecular mechanisms have not been well elucidated. We addressed these questions using PLCbeta4-deficient mice, which show decreased visceral pain responses. We demonstrate that burst and tonic firings of TC neurons are concomitantly regulated by PLCbeta4 pathway. Blocking of this pathway by the mutation simultaneously increases bursting and decreases tonic firing of TC neurons through concurrent upregulation of T- and L-type Ca(2+) currents. The mice with increased bursting and decreased tonic firing of TC neurons showed reduced visceral pain responses. Furthermore, we show that modulation of the Ca(2+) channels or protein kinase C (PKC), a downstream molecule of PLCbeta4, altered the firing modes of TC neurons and pain responses in the predicted ways. Our data demonstrate the molecular mechanism and behavioral consequences of altered firing modes of TC neurons in relaying the visceral pain signals. Our study also highlights the thalamic PLCbeta4-PKC pathway as a "molecular switch" for the firing modes of TC neurons and thus for pain sensory gating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

Thalamic control of visceral nociception mediated by T-type Ca2+ channels.

Sensations from viscera, like fullness, easily become painful if the stimulus persists. Mice lacking alpha1G T-type Ca2+ channels show hyperalgesia to visceral pain. Thalamic infusion of a T-type blocker induced similar hyperalgesia in wild-type mice. In response to visceral pain, the ventroposterolateral thalamic neurons evokeda surge of single spikes, which then slowly decayed as T type-depen...

متن کامل

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Functional regulation of T-type calcium channels by S- nitrosothiols in the rat thalamus Running title: S-nitrosylation regulates excitability in the thalamus

Although T-type Ca 2+ channels in the reticular thalamic nucleus (nRT) have a central function in tuning neuronal excitability and are implicated in sensory processing, sleep, and epilepsy, the mechanisms involved in their regulation are poorly understood. Here we recorded T-type Ca 2+ currents from intact nRT neurons in brain slices from young rats and investigated the mechanisms of T-type cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 49  شماره 

صفحات  -

تاریخ انتشار 2008